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SINGULAR PERTURBATION TECHNIQUES 
FOR REAL TIME AIRCRAFT TRAJECTORY 

OPTIMIZATION AND CONTROL 

Anthony J. Calise* and Daniel D. Moerde? 

Drexel University, Philadelphia, PA. 19104 

SUMMARY 

This study examines the usefulness of singular perturbation methods 

for developing real time computer algorithms to control and optimize 

aircraft flight trajectories. A minimum time intercept problem using F-8 

aerodynamic and propulsion data is used as a baseline. This provides a 

framework within which issues relating to problem formulation, solution 

methodology and real time implementation are examined. Theoretical 

questions relating to separability of dynamics are addressed. With respect 

to implementation, situations leading to numerical singularities are iden- 

tified, and procedures for dealing with them are outlined. Also, parti- 

cular attention is given to identifying quantities that can be precomputed 

and stored, thus greatly reducing the on-board computational load. Numeri- 

cal results are given to illustrate the minimum time algorithm, and the 

resulting flight paths. An estimate is given for execution time and 

storage requirements. 

k 
Associate Professor, Dept. of Mechanical Engineering and Mechanics 
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SECTION 1 

INTRODUCTION 

This report documents the derivation and evaluation of an on-line 

algorithm for minimum-time intercept. An approximation to the solution 

of the minimum-time intercept problem, resulting in a feedback control 

law, was derived using singular perturbation theory. The resulting 

control logic was evaluated using a model for the F-8 aircraft dynamics. 

The singular perturbation method is an order reduction procedure 

where a system's dynamics are separated into fast and slow modes. There 

are two major benefits. First, higher-order problems can be approximated 

by a series of lower-order ones; and second, numerically "stiff" systems, 

having extreme differences in their modal behavior are solved on separate 

time scales. 

Applications of singular perturbation theory to flight mechanics 

problems have, to date, centered primarily on aircraft trajectory optimiza- 

tion. In the early seventies, a number of papers appeared in which energy 

state and reduced order modelling, with separate boundary layer correction 

terms, were employed to solve a number of flight control optimization 

problems [l-6]. Matched asymptotic expansions were employed somewhat later 

in solving the minimum-time-to-climb problem, observing that the first 

order approximation matched well with the numerical solution obtained for 

the full order problem using a steepest descent technique [7]. Singular 

arcs have also been studied in the minimum-time-to-climb problem [8, 91. 

In a more recent sequence of papers,. complete time scale separation 

has been applied in order to obtain feedback control solutions. Problems 

studied this way include the vertical plane minimum time and fuel problems 

and those involving weighted combinations of the two [lO-151. Feedback 



control of a missile in the horizontal plane was examined in [16]. The 

three-dimensional minimum-time interception problem was examined by 

patching together two-dimensional subproblems .in [17]. Under a NASA-sup- 

ported research effort that paralleled this effort, trajectory optimization 

in the long range, three-dimensional minimunrtime intercept problem has 

been studied [18]. Singular perturbation theory has also been found 

useful in differential game problems [19-211. The results derived 

in this study are mainly based on the approach in [12]. 

The research described in this report resulted in several extensions 

in the "state of the art" for the three-dimensional minimum-time interception 

problem: 

1. This work provides solutions for both long and short range cases, 

with short range cases being characterized by the lack of a 

maximum velocity cruise arc. 

2. A boundary layer matching criterion was derived such that the 

terminal boundary layer matching conditions could be calculated 

of.frline, thus eliminating the problem of attempting to backwards 

integrate the terminal boundary solution on-line. This has been 

identified as one of the major stumbling blocks encountered in 

the application of singular perturbation theory [22]. Indeed, 

in the short range case, matching between initial and terminal 

layer arcs is the key issue to be resolved in solving the problem. 

3. The ordering and separation of energy and heading rate dynamics 

has been defined and justified for this problem, where range to 

interception is sufficiently large that optimal trajectories are 

dominantly characterized by climb and descent, rather than by 

turning. It should be noted that the ordering in this report is 

the reverse of that used in [ll and [lo], and is due to the pre- 

sence of relative position dynamics in the model. 
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4. A detailed analysis has been made of issues pertaining to the 

separation of altitude and flight path angle dynamics. Optimiza- 

tion of altitude and flight path angle dynamics is a classical 

problem in flight mechanics, which to date had not yielded a 

solution suitable for on-line implementation. The essential 

problem is that these dynamics are highly coupled when considered 

apart from position and energy dynamics. It is shown that the 

dynamics, while not completely separable, csn be approximated 

by singular perturbation methods with the inclusion of a penalty 

term on flight path angle in the performance index. 

5. The control algorithm was implemented as a flight director in the 

F-8 real time simulator at NASA Langley. Results of this evalua- 

tion are given in [23], and a NASA technical report is currently 

being prepared on this topic. The major issues relating to real 

time implementations have been addressed as part of the research 

effort. 

The organization of this report is as follows. Section 2 describes 

the problem formulation and summarizes the zero order singular perturbation 

solution. Section 3 gives a summary of the on-line control logic, describing 

the practical issues encountered during implementation of the control law. 

Section 4 describes the point-mass model of the F-8 aircraft employed in 

generating numerical results. Section 5 presents numerical results for this 

aircraft. Section 6 gives the conclusions and recommendations for future 

work. Detailed derivations of the control solution presented in Section 2 may 

be found in Appendices A and B. The first deals with position, energy and 

heading dynamics, and the second, with altitude and flight path angle 

dynamics. Appendix C presents the analysis relating to separation and 

ordering of energy and heading rate dynamics. Appendix D presents a means 

3 



-- . .- ._. . . . --- ___- __.._. ._.--_-_--._- -.-._ -.-.---.. . . _-_.... -.- __--..-..._. - . 

by which the altitude and flight path angle dynamics can be analyzed on 

separate time scales, and gives a detailed analysis of the issues involved. 

Appendix E provides a description of and justification for a procedure 

for minimizing a Hamiltonian function with one unknown adjoint variable, 

employed several times in the analysis in Appendices A and B. A detailed 

description of the measures taken to suppress numerical singularities from 

the computed control solution is given in Appendix F. 



SYMBOLS 

cD 

cDO 

cL 

‘a 
D 

DO 

E 

EO 

EO* 

g 
H 

h 

K 

k 

L 

L1 

L2 
M 

m 

pE 

pB 

4 
r 

S 

T 

t 

5w 
V 

W 

x9 Y 
a 

a 
0 

= Drag Coefficient 

= Zero Lift Drag Coefficient 

= Lift Coefficient 

= Slope of Lift Coefficient Curve, l/rad 

= Drag, N 

= Drag for L = W, N 

= Total Energy per Unit Weight, m 

= Pseudo Cruise Energy Level, m 

= Long Range Cruise Energy Level, m 

= Gravitational Constant, m/s2 

= Hamiltonian 

= Altitude, m 

= Induced Drag Parameter 

= Flight Path Angle Weighting Parameter in Cost Function 

= Lift, N 

= Vertical Lift Component, N 

= Horizontal Lift Component, N 

= Mach Number 

= Mass, kg 

= Energy State and Costate Eigenvalues, l/s 

= Heading State and Costate Eigenvalues, l/s 

= Dynamic Pressure, N/m2 

= Range, m 

= Reference Area, m2 

= Thrust, N 

= Time, s 

= Time-To-Go, s 

= Velocity, m/s 

= Weight, N 

= Horizontal Position Variables, m 

= Angle of Attack, rad 

= Zero Lift Angle of Attack, rad 



Symbols (cont.) 

6 = Heading, rad 

Y 3 

6C.l - 

E 3 

rl 3 

x = 

'El = 

'h3 = 

Xx,A = 
0 YO 

%2 = 

x = 
y4 

P =1 

P = 

II = 

5’ T2 = 

Subscripts 

C = 

d = 

D = 

f E 

P = 

max = 

min = 

T = 

0 f 

1, 2,3,4 = 

Flight Path Angle, rad 

Perturbation Associated with a Particular Variable 

Perturbation Parameter 

Induced Drag Parameter 

Line-of-Sight Angle, rad 

Energy Costate, s/m 

Altitude Costate, s/m 

Horizontal Position Costates, s/m 

Heading Costate, s/rad 

Flight Path Angle Costate, s/rad 

Bank Angle, rad 

Air Density, kg/m3 

Stretched Time Scale, s 

Time Constants, s 

Climb 

Descent 

Desired 

Final 

Relating to Proportional Vertical Lift 

Maximum 

Minimum 

Target 

Outer Solution Variable or Solution 

Boundary Layer Variables or Solution 

Superscripts 

(3 = Nominal Value 

0 = Artificially Perturbed Variable 
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SECTION 2 

PROBLEM FORMULATION AND SOLUTION 

This section summarizes the problem formulation and the resulting 

singular perturbation solution. Derivations of the results summarized 

here may be found in Appendices A and B. Numerical results are given 

to illustrate the control solution for a variety of flight conditions. 

2.1 Problem Formulation 

The equations of motion are written in a horizontal, target centered 

coordinate frame: 

% = v cos y cos $ (2 l 1) 

9 = V cos y sin B - VT cos yT (2.2) 
. 

BE = (T-D) v/w (2.3) 

E2i = L sin u/m V cos y (2.4)+ 

E3i = Vsiny (2 05) 
4. 

EY f (L cos p - W cos y>/mV (2.6) 

The variables in (2.1-2.6) are defined with the aid of Figure 1, where the 

subscript "T" is used to designate the target. These equations are valid 

for a flat earth, with thrust (T) directed along the flight path and 

constant weight. Drag (D) is assumed to have a conventional parabolic form 

D = qs CD = 9s(CD + 17 CL a2) 
a 

(2.7) 

which can also be written as 

D = qs (CD + KL2/qs), q = PV2/2 (2.8) 

where q is the dynamic pressure, p is the air density and 

K = n/CL 
a 

(2.9) 

L = qs CL = qs(CL a) 
a 

(2.10) 

The variable E is the total aircraft energy (kinetic and potential) per unit 

weight. 

+ In this report, w/xyz is to be interpreted as w/(xyz>. 
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Figure 1. Horizontal plane intercept geometry 



E-h+ v2/2g (2.11) 

where h is the aircraft altitude. The control variables are aircraft lift 

(L), bank angle (P) and thrust (T). The objective is to find the controls 

L, u, T that minimize 

J=l 
tf o (1 + k sin2y)dt , k 10 (2.12) 

where k = 0 for minimum time. The minimization is subject to the following 

state and control variable constraints: 

L<WG max 

L 2 qs CL a max 
a 

T min (h,V) <T <T - - max (h, VI 

q 2 qmax 3 MIMmax (h) 

(2.13) 

(2.14) 

where G is the maximum load factor, a 
max max is the stall angle of attack, 

T min and T are the minimum and maximum thrust levels that are functions IllaX 
of aircraft altitude and velocity (V). The boundary conditions are such that 

the initial aircraft state is fully specified, and we require 

x(t,) = Y(t,> - 0 , h(tf) = hT(tf) (2.17) 

for intercept, when h (t T f ) is taken as the projected target motion in 

altitude 

hT(tf) = hT(0) + (VT sin Y,) tf (2.18) 

The objective here in using singular perturbation methods is to.approxi- 

mate the open loop optimal control solution with a near-optimal control 

solution in feedback form. Towards this end, the equations of motion in 

(2.1-2.6) have been scaled by powers of E, which imply that a natural separa- 

tion in the system dynamics exists. Ideally, one would like to identify E 

with small physical system parameters. This can be done with varying degrees 

of success by writting the equations of motion in a non-dimensional form. 

An example is given in [15]. The ordering selected in (2.1-2.6) is based 

on an understanding of aircraft dynamics, experience with problems in 

trajectory optimization, and the earlier results of researchers in this 

field. The approach here is to seek a solution for ~1 by an expansion 

about ~0. While this departs from the spirit of asymptotic expansions, 

9 



where E is regarded as "sufficiently small", the accuracy of the resulting 

solution depends mOre on the degree to which the dynamics are separated. 

The particular ordering selected here can be argued on a physicsl 

basis. Long range optimal trajectories are generally made up of climb, 

cruise and descent arcs. The climb and descent arcs can be considered as 

boundary layers needed to satisfy initial and terminal constraints on 

energy and altitude, during which energy is first increased (to the cruise 

energy) and then decreased (to satisfy the terminal altitude constraint). 

Initial transitions to the optimal climb path and the optimal heading for 

intercept take place on a much shorter time scale, in comparison to the 

time needed to gain or lose energy. Selecting 6 dynamics as slower than 

h and y dynamics allows for high and low speed yo-yo maneuvers during the 

initial turn at large heading errors. This is illustrated in the results 

of Section 2.4. A detailed analysis of the ordering of E, f3 and h, y dy- 

namics is given in Appendices C and D. 

2.2 Outer Solution 

In the outer solution, the controlled aircraft is assumed to be trav- 

elling on a fixed course at a constant speed, as can be seen by letting 

E + 0 in (2.1-2.6). The problem is reduced to optimal intercept in the hori- 

zontal plane. The state variables are x and y, and the controls are 8, 

h sndE. In order to satisfy the intercept requirement (see Fig. l), we 

must have 

Vsin(B-X) = VT cos yT cos X (2.19) 

or, in other words, there is no relative motion allowed perpendicular to the 

horizontal plane line-of-sight axis. The optimal controls ho and E. are 

determined as 

ho’ E. = arg max (V) 
h,E 

(2.20) 

where the maximization takes place subject to the constraints in (2.13-2.16) 

and subject to 

To = Do, p, = 0, y, = O,Lo = W (2.21) 

where D 
0 

is drag for L = W 

Do= qs CD + &qs 
0 

and 

(2.22) 

4 = dho)VE/2 , V = ~~g(Eo--ho) 
0 

(2.23) 

10 
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These constraints arise from setting E-HI in (2.2-2.6). The cruise point 

(2.20) for the F-8 aircraft is displayed in Figure 2, superimposed on the 

aircraft's flight envelope. It should be noted that, in a higher perfor- 

mance aircraft for which the q or Mach boundaries would be encountered 

while T 2 D, the solution would lie at the intersection of the constraint 

boundary with the zero energy rate boundary. This is illustrated for an 

F-4 aircraft in [25]. 

The optimal cruise heading (8,)is computed using (2.19): 

B = sin 
0 

-l {VT cos yT cos A/VI + h (2.24) 

The costates A 
Y 

and 7r 

in the outer solution, 
Y ' 

associated with the horizontal position dynamics 

Chile not explicitly appearing in the outer control 

solution, are used in subsequent boundary layer solutions. These take the 

form 

x = 
X 

-cosB,/ No-VT cos YT cos B,) 
0 

x 
Y, = 

-sinSo/(Vo-VT cos yT cos 8,) 

(2.25) 

(2.26) 

It should be noted that the cruise solution for ho and E. is indepen- 

dent of target motion and intercept geometry. This allows these quantities 

to be calculated off-line and stored. The only outer solution calculations 

performed on-line are (2.24-2.26). 

2.3 First Boundary Layer Solution 

The first boundary layer solution addresses energy dynamics. The 

constraints 

% = 0, y1 = 0, Ll = w (2.27) 

in addition to (2.13-2.16), arise when the time transformation 't = t/s 

is introduced and we let E +O. The controls are T, h, and 8. The optimal 

heading (81) is identical to that for the outer solution. Since T appears 

linearly in the dynamics, we have 

T1= Tmax (h,V) , A 
E1 

c 0 (2.28) 

T1 = Tmin(h,V) , hEl ' 0 (2.29.) 

11 



is the energy costate variable. The solutions in (2.28) and (2.29) 

correspond to climb and descent. Optimization with respect to h 

yields 
0 

hl = arg minj 
--Do)V 

1 
h v-v0 

E=E current 
I T>D 

for ascent, and 

-CT 
hl = arg min{, min-Do)V 

v-v0 I 
h 

(2.30) 

(2.31) 

for descent. 

E =E current 
T<D 

The climb path to cruise for the F-8 is superimposed on the aircraft 

flight envelope as a bold line in Figure 2. The optimal descent path is 

along the q,,, boundary. The expression for the first boundary layer 

costate is 

hEl = -~o(E,hl)/Vl(Tl-Do> (2.32) 

where Ho(E, hl) is the outer solution Hamiltonian evaluated at the first 

boundary conditions: 

Ho(E,hl) = {xx v COS B + xy cVsin6 - vTcosyT) + l’ 
0 0 

(2.33) 

E=E current 

h 1 =h 

Since the solution for hi(E) is independent of target motion, it can 

be precomputed and stored as a function of E. Only the costate variable 

in (2.32) is computed on-line. 

2.4 Second Boundary Layer 

This boundary layer is obtained by introducing the time transformation 

T = t/E2 and letting ~0. this results in the constraints: 

y2=o , L2 = Lt2 + w2 (2.34) 

where L is the total lift and L22 is the horizontal lift component. The 

controls in this boundary layer are T, h, and L22. Assuming that all turning 

takes place near the initial time where hE < 0, the optimal thrust is 
1 

T2 = Tmax (h2' v2) (2.35) 

12 
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Figure 2. Flight envelope for the F-8 aircraft. 



where h 2 is defined by 

h2 = arg min I-p/KV Hl(E,h,f3)3 

I 

(2.36) 
h E=E current 

f3 =B current 

Hl(E, h, B) is the first boundary layer Hamiltonian evaluated at current 

values of E, h and B. It is expressed as 

Hl(E, h, B) = 1 v cos B + A 
X 

y [VsinB -VT COSYTl + 
0 0 

x 
E1 

(T-Do)V/w + 1 (2.37) 

The solution for L22 is analytic, and is given by 

L22 = J- qs W Hl(E,h,B) /VKXE . sign (go-B) (2.38) 
1 

After performing the minimization in (2.36), the heading costate variable 

is computed using 

b2 = -2 Hl(E,h,8) mV/L22 
I h = h2 

(2.39) 

The calculations in (2.36-2.39) must be performed on line. To accelerate 

the minimization in (2.36), which is performed each time the control 

solution is updated, the solution from the previous time instant is used 

as a starting point. 

Numerical results for the F-8 aircraft are given in Figures 3 and 4. 

These display L22 and h2, respectively, as functions of A.B = go-B for several 

values of E. It can be seen from the figures that, at all energy levels, 

L22 + 0 and h2 + hl as A8-9. This type of asymptotic behavior is necessary 

for a vslid singular perturbation solution. Note also that at higher energies, 

h2 does not digress very far from hl and thatL22 even for large heading 

errors, is significantly below L max. This indicates that, at these higher 

energies, the zero-order solution attempts to preserve the combination of 

energy rate and closure rate from the first boundary layer solution. At 

low energy levels the situation is considerably different, with emphasis 

placed on rapidly reducing heading error. Horizontal lift is saturated before 

AB reaches 1.2 rad. For larger heading errors, h2 increases so that the 

14 



E = 4696 m 

Figure 3. Normalized second boundary layer 
horizontal lift as a function of heading 
error for several energy levels. 
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Figure 4. Second boundary layer altitude solution 
as a function of heading error for 
several energy levels. 
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aircraft is driven to the corner velocity for that energy level. At a 

midrange energy, priorities are more evenly mixed. The solution for h2 

remains close to hl longer than in the low energy case. Also note that 

L22 can take on both saturated and nonsaturated values after encountering 

the maximum lift constraint boundary. These results illustrate the trade-off 

between energy rate, closure rate and turn rate that takes place in the 

second boundary layer solution. 

2.5 Third Boundary Layer Solution 

The third boundary layer addresses the altitude dynamics. It arises 

from introducing the time transformation r = t/c3 and letting E + 0. The 

vertical lift L13 for this boundary layer is constrained to be 

L13 = w cos y (2.40) 

Due to non-zero values of y, the penalty term k sin2 y in (2.12) has an 

effect on the solution for the third and fourth boundary layers. The 

controls here are horizontal lift (L23) and y. The zero-order solution 

for L23 is given by 

'23 = min {LZmax, L22/cos y1 (2.41) 

where 

L 2max = Liax - Lf3 (2.42) 

It can be seen that L23 + L22 as y -+ 0 which is the constrained value 

for y in the second boundary layer. The expression for y3 is 

y3 = arg max i&n y/H2(h,E,S,y)) *sign (h2-h) (2.43) 
Y 

where H 2 is the second boundary layer Hamiltonian evaluated at the current 

conditions for its arguments: 

H2hEAy) f (Ax COSB + Xy sinB)V cos y - 
0 0 

Xy 
0 vT cos yT 

+A 
E1 

(T-D)V/W + x 
B2 

L23 g/WV cos y + 1 + ksin2y (2.44) 

Numerical results for y3 as a function of altitude error for zero 

heading error is shown in Figure 5. The effect of the parameter k is 

also shown. Note that y3 + 0 as h2 + hl and that, as might be expected, 

increasing k decreases the magnitude of y3 at all flight conditions. 

The costate for this borrndary layer +, is determined from 
3 

17 



k =O 

. 2 

A 

.6 

.89 
1.1 

I I I I 
500. 1000. koc 

!-I-HDiMj: 
2900. 2500. 3600 rn 

Figure 5. Third boundary layer solution for flight 
path angle versus altitude error for 
E = 11320 m. 

18 

-.- _._-.__- ._.__. -.._- _.._ -.-_.-__.-. .-.__-. 



- 

%3 
= - H2(h,E,B,y3)/V sin y3 (2.45) 

2.6 Fourth Boundary Layer Solution 
In the fourth boundary layer, the vertical and horizontal components 

of lift (L14 and L24, respectively) are refined to reflect the flight path 

angle dynamics. As long as L c Lmax, the lift components are: 

L14 * w cos y - H3(h,E,B,y)qsW/XE KV2 cos y (2.46) 
1 

L24 = 'B2 gd2hE KV2 cos y 
1 

These are used to define the final lift and bank angle commands: 

l.l = tan -l a24/L14> 

(2.47) 

(2.48) 

(2.49) 

If L in (2.48) exceeds Lmax, we set L = Lmax and obtain an expression for p: 

tan lJ = (A /A 
82 y4 

cos y> . sign (B,-8) (2.50) 

In this formulation X 
y4' 

the costate for y, is evaluated as a root of 

AX 2 +Bh +CQO 
y4 y4 

(2.51-a) 

A = g2 (Lmax 2/w2 - cos2y) Iv2 (2.51-b) 

B = 2@ cos yglv (2.51-c) 

c = (X6 Lmax g/WV cos y>2 - (P2 
2 

4 = Hl-XE (L2 
1- 

-W2cos2y)KV/qsW + ah V sin y 
3 

(2.51-d) 

(2.51-e) 

It is demonstrated in Appendix B that (2.51-a)will always have real roots 

of opposite sign; thus X is chosen such that 
y4 

sign 1X 1 
y4 

= - sign {y3-y) (2.52) 
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Given this value for A 
y4' 

P IS computed using (2.53) placing JJ in the 

quadrant appropriate to sign {y3-y). 

It should be noted that the arbitrary separation of h and y dynamics 

in the third and fourth boundary layers fails to account for the coupling 

that naturally exists between these states. A method is given in Appendix 

D for choosing k in (2.12) so that this problem is alleviated. 
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SECTION 3 

FEEDBACK IMPLEMENTATION 

This section describes the feedback implementation of the control 

solution formed from the singular perturbation outer and boundary layer 

solutions described in Section 2. Five topics are covered: organization 

of climb and descent legs, an alternate proportional vertical lift scheme, 

thrust and lift control during descent, avoidance of singularities in 

the control solution, and the overall organization of the actual feedback 

implementation. 

3.1 Climb and Descent Legs 

Long range intercept trajectories, ignoring initial turning and 

other transients, have three stages. The first stage is a climb to 

cruise at the long range optimal cruise energy (Et). The second stage 

is a cruise leg. The third stage can take one of two forms. If the 

target altitude is below the altitude for long range cruise, it is a 

descent leg. It is important to note that climb and descent in this 

report refer to gain and loss of energy - not altitude. For example, 

altitude decreases during a portion of the climb profile. If the 

target altitude is above the long range cruise altitude, the terminal 

stage is a zoom climb (constant energy altitude gain) maneuver. 

Short range intercepts are defined as occurring when the intercept 

range is less than the range required to fly a long range climb and descent. 

In this case, the optimal trajectory would consist of climb and descent 
* 

that meet at sn energy level less than E 
0 

at an altitude and velocity on 

the zero-energy-rate boundary for T = Tmax, or on the dynamic pressure or 

Mach constraint boundary (see Fig. 1). Henceforth, these lower energy 

points will be referred to as pseudo cruise points, Eo. 

An important element in the control design is the decision logic 

required for determining whether sn intercept path is iong or short range. 

In the short range case, the logic must select a pseudo cruise energy 

level such that the horizontal range for climb and descent matches the 

predicted intercept range. In the long range case, Ez is used and a 

cruise leg is inserted to match the predicted range to intercept. Descent 

is initiated when the horizontal range for descent from E. matches the 

predicted range to intercept. 
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As was mentioned in Section 2, the climb, cruise and descent solutions 

are independent of intercept geometry and target parameters. The cdcula- 

tions are performed off-line, and the results stored in the form hc(E,Eo) 

for climb and hd(E) for descent, where E o represents selected pseudo cruise 

energy levels. For the long range case we have hc(E,Ez). Several climb 

altitude profiles for the F-8 aircraft are illustrated in Figure 6. The 

descent profile is independent of the selected cruise energy because 

satisfaction of (2.31) for hd results in values on the dynamic pressure 

boundary. 

The time, tc(E,Eo), and horizontal distance, rc(E,Eo), required to 

climb from E to E. were determined by computing the integrals: 

EO tc(E,Eo) = IE (l/i)dE 

E 
rc(E,Eo) = / E" (Vl/i)dE 

where 

v1 
=&E-hl(E,Eo))2g (3.3) 

(3.1) 

(3.2) 

and i is the energy rate computed at hc(E,Eo). Tabular data for hc(E,Eo), 

tc(E,Eo) and rc(E,Eo) is presented in Table 1 for EI and several pseudo cruise 

energies. 

The expressions used in calculating altitude and range for descent 

are slightly different from those used in calculating altitude and range 

for climb, since in descent, flight path angle is too large to be ignored. 

We have: 

tdW = lE* (i/i)dE (3.4) 
E 

0 

rd(E) = IE E* (i-,/i) dE 

0 

where 
. 
'd 

= v1 cos yd 

vl = h-hd (E) 12g (3.7) 

'd 
= sin-l{(dhd/dE)i/Vl} (3.8) 
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Figure 6. Several climb altitude profiles for 
the F-8 aircraft. 
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TABLE 1 

F-8 CLIMB ALTITUDE, TIXE AND RANGE 
AS FUNCTIONS OF ENERGY 

ASCENT VARIABLES9 CRUISE ENERGY= 4696.05 H 

ENERGY(H) II(H) TIHECSEC) RANGEtP) 

279.45 0.0 55.0058 10342.0 
1383.60 0.0 34.4565 7888.8 
2487e75 0.0 21.4960 5389.9 
3591.90 30.48 10.4930 2720.8 
4696.05 820.36 0.0 O*O 
5800.20 0.0 0.0 0.0 
6904.35 0.0 0.0 0.0 
8008.50 0.0 0.0 0.0 
9112.65 0.0 0.0 0.0 

10216.80 0.0 0.0 0.0 
11320.95 0.0 0.0 0.0 
12425.10 0.0 0.0 0.0 
13529.25 0.0 0.0 0.0 
14633.39 0.0 0.0 0.0 
15737.55 0.0 0.0 0.0 
16841.70 0.0 oao o*o 
17945.85 0.0 0.0 0.0 
19049.99 0.0 0.0 0.0 

ASCENT VARIABLES* CRUISE ENERGY= 6904.35 H 

ENERGY tH) H(H) TIMEtSEC) RANGE(H) 

279.45 0.0 76.8073 16350.4 
1383.60 0.0 56.2579 13897.2 
2487.75 0.0 43.2975 11398.3 
3591.90 30.48 32.2945 8729.2 
4696.05 822.96 21.8001 6009..3 
5800.20 1615.44 11.1350 3118.5 
6904.35 2477.75 0.8 0.0 
8006.50 0.0 0.0 0.0 
9112.65 0.0 0.0 0.0 

10216.80 0.0 o*o 0.0 
11320.95 0.0 0.0 0.0 
12425.10 0.0 0.0 0.0 
13529.25 0.0 0.0 0.0 
14633.39 0.0 0.0 0.0 
15737.55 0.0 0.0 0.0 
16841.70 0.0 0.0 0.0 
17945.85 0.0 0.0 0.0 
19049.99 0.0 0.0 0.0 
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TABLE1 (CONTINUED) 

ASCENT VARIABLES9 CRUISE ENERGY= 9112.65 H 

ENERGY(H) HtHi TIHE(SfC) RANGE(M) 

279.45 0.0 107.9332 25825.6 
1383.60 0.0 87.3839 23372.3 
2487.75 .o 00 74.4234 20873.4 
3591.90 30.48 63.4204 18204.4 
4696.05 822.96 52-9260 15484.5 
5800.20 1615.44 42.2609 12593.7 
6904.35 2407.92 31.1056 9437.3 
8008.50 3139.44 17.7964 5471.5 
9112.65 4065.64 0.0 0.0 

10216.80 ,o . 0 oeo o-0 
11320.95 0.0 0.0 0.d 
12425.10 0.0 0.0 0.0 
13529.25 0.0 0.R 0.0 
14633.39 0.0 0.0 0.0 
15737.55 0.0 0.0 0.0 
16841.70 0.0 0.0 0.0 
17945.85 0.0 0.0 0.0 
19049.99 .o . 0 o*o 0.0 

ASCENT VARIABLES, CRUISE ENERGY= 11320.95 H 

Eh;ERGY<H) Ii(M) TIMEtSEC) RANGEtH.1 

279.45 0.0 194.4020 54474.5 
1383.60 0.0 173.8526 52021.2 
2487.75 0.0 160.8922 49522.3 
3591.90 30.48 149.8892 46853.3 
4696.05 822.96 139.3948 44133.4 
58LlOa20 1615.44 128.7297 41242.6 
6904.35 2407.92 117.5744 38086.2 
8008.50 3139.44 104.2652 34120.5 
9112.65 3870.96 .84.9084 28070.4 

10216.80 4541.52 51.5031 17163.0 
11320.95 5626.88 0.0 0.0 
12425.10 0.0 0.0 0.0 
13529.25 0.0 0.0 0.0 
14633.39 0.0 oeo 0.0 
15737.55 0.0 0.0 0.0 
16841.70 0.0 o*o 0.0 
17945.85 0.0 0-O 0.0 
19045.99 0.0 0.0 0.0 
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TABLE 1 (C~NTI~WED) 

. 
ASCENT VARIABLES9 CRUISE ENERGY= 1'3529.25 H 

ENERGY<H) H(H) TIHEtSEC) RANGE(H) 

279.45 0.0 237.1549 67539.1 
1383.60 0.0 216?6056 65085.9 
2487.75 0.0 203.6451 62586.9 
3591.90 30.48 192.6421 59917.9 
4696.05 822.96 182.1478 57198.0 
51300.20 1615.44 171.4827 54307.2 
6904.35 2407.92 160.3274 51150.8 
8008.50 3230.88 147.3731 47332.3 
9112.65 4358.64 131.9121 42741.9 

10216.80 5486.40 114.7642 37635.2 
11320.95 6096.00 92.6095 30741.9 
12425.10 7193.28 62.4630 21150.7 
13529.25 7034.38 0.0 0.0 
14633.39 0.0 0.0 0.0 
15737.55 0.0 0.0 0.0 
16841.70 0.0 0.0 0.0 
17945.85 0.0 0.0 0.0 
19049.99 0.0 0.0 0.0 

ASCENT VARIABLES9 CRUISE ENERGY= 15737.55 H 

ENERGY(H) .H(H) TIHEtSECl RANGE(H) 

279.45 0.0 275.9463 78177.2 
1383.60 0.0 255.3971 75724.0 
2487.75 0.0 242.4366 73225.1 
3591.90 30.48 231.4336 70556.0 
4656.05 822.96 220.9393 67836.1 
5800.20 1615-44 210.2742 64945.3 
6904.35 2407.92 199r1189 61789.0 
8008.50 2566.16 187.1362 58435.7 
9112.65 4663.44 173.9817 54709.5 

10216.80 5791.20 159.2435 50510.3 
11320.95 6888.48 142.5676 45719.5 
12425.10 7985.76 123.3140 40147.4 
13525.25 e717.28 99.3018 32953.4. 
14633.39 9784.08 68.3067 23472.8 
15737*55 8370.48 0.0 0.0 
16841.70 0.0 0.0 0.0 
17945.85 0.0 0.0 0.0 
19049.99 0.0 0 ..o 0.0 
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m3LE 1 (CONCLUDED) 

ASCENT VARIABLES- CRUISE ENERGY= 19049.99 H 

ENERGY(H) H(H) ZIHEtSECl RANGE(H) 

279.45 oeo 628.05549 210690.6 
1383.60 0.0 608.0056 208237.4 
2487.75 0.0 595.0452 205738.5 

-3591.90 30.48 584.0422 203069.4 
4646.05 822.96 573.5481 200349.5 
5800.20 1615.44 562.8831 197458.7 
6904035 2407.92 551.7278 19430264 
8008.50 2596 r64 539.8125 190987.3 
9112.65 4846.32 527.1221 187502.6 

10216680 5974.08 513.2688 183662.9 
11320.95 7071.36 497.5857 179272.1 
12425.10 e168.64 479.4856 174160.9 
13529.25 5265.92 458.2539 168122.7 
14633.39 10027.92 431.6506 160315.6 
157-37.55 11125.20 397.0964 149984.7 
16841.70 10271.76 343.9612 132477.7 
17945.85 10668.00 244.0769 95683.5 
19049.99 10636.09 0.0 o*o 
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where E is the energy at initiation of descent. Tabular values for hd(E), 

td(E) and rd(E) are provided in Table 2. Climb times and ranges from 

the current energy to the cruise energy are obtained by interpolating 

and differencing the values in Table 1. A similar procedure is used 

for descent using Table 2. For example, 

td(Ec,Ef) = td(Ef) - td(Ec) (3.9) 

rd(Ec,Ef) = rd(Ef) - rd(Rc) (3.10) 

In general, Ef is not known a priori and must be determined such that 

Wf) = hT(tf>. A terminal constraint must be satisifed: 

hd (Ef) = hT + VT Sin yT tgo (3.11) 

where t 
go 

is the estimated time remaining until intercept. Referring to 

Figure 1, we initiate descent when 

rd(Eo,Ef) cos (8,-A) a R + (VT cos yT sin A)td(Eo,Ef) (3.12) 

is satisfied, where R is the current horizontal range. 

3.2 Proportional Vertical Lift 

An option was included in the control logic for stopping the 

singular perturbation solution after the second boundary layer, and using 

a suboptimal proportional control for vertical lift. We first define a 

desired flight path angle 

YD = (h2-h)/rlV +i (dhl/dE)/V1 , Vl = &E-hl)Pg (3.13) 

The second term in (3.13) is an approximation to the flight path angle for 

following the first boundary layer climb path. The proportional vertical 

lift (Lip) is computed based on a desired flight path angle rate proportional 

to (YD’Y) : 

;D = (YD-Y)/T2 = (LIP-Wcosy)/mV (3.14) 

Solving for LIP we have 

LlP 
= mV(yD-y)/r2 + Wcosy (3.15) 
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TABLE 2 
F-8 DESCENT LTITLJDE, TIME AND RANGE 

AS FUNCTIONS OF ENERGY 

DESCENT VARIABLES, CRUISE ENERGY= 19100.07 H 

EKERGYCH) H(H) TIHEtSEC) RANGE(H) 

3566.93 0.0 357.6738 107306.4 
4499.47 677.40 270.8616 83918.9 
5412eOO 1331.60 198.3982 63759.6 
6324.54 1976.64 143e5021 ri992.5 
7.237.08 2604.15 108i2608 37554.1 
8149.62 3212.69 87.5223 31231.0 
9062.16 3814.46 74.0457 27015.2 
9974.69 4390.52 63.7786 23719.3 

10887.23 4957.39 55.3226 20935.3 
$1799.77 5506.95 48.1671 18520.0 
12712.30 6030.09 41.5890 16232.8 
13624~85 6553.26 35.1294 13919.1 
14537.38 7055.07 28.8112 11585.8 
15449.92 7531921 22.6819 9252.1 
16362.46 8006.49 16.7482 6929.9 
17275.00 6463.37 10.9957 4614.5 
18187.54 E896.07 5.4142 2303.1 
19100.07 9317.89 0.0 0.0 
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The controls L and I.I are then computed as 

L= fqp + Lip 

P = taa-1(L22/Llp) 

A block diagram of these calculations is given in Figure 7 . 

teristic equation for the resulting transfer function is 

2 T1T2S + T1 s + 1 = 0 

The charac- 

(3.18) 

The undamped natural frequency (u,) and the damping ratio (5) for this 

(3.16) 

(3.17) 

second order system are 

w = n l/qy (3.19) 

5 = Jrl/2r2 (3.20) 

The values chosen for the above were wn = O.lrad/s and 5 = 0.8, respec- 

tively. This resulted in values for rl and r2 of 15.0 and 6.0 s respec- 

tively. 

3.3 Thrust and Lift Control During Descent 

In the ideal case of a fully optimal control solution, there would 

be insignificant maneuvering and throttle variation during descent. There 

is, however, significant turning in the zero order solution implemented. 

This is primarily due to two factors. First, since the aircraft follows 

the dynamic pressure constraint boundary during most of the descent, and 

since the flight-path angle is non-zero, the intercept heading changes 

from the optimal cruise heading value. Because of this, it is necessary 

to update the intercept heading during descent using (2.24) and the hori- 

zontal component of aircraft velocity. Second, target maneuvers that 

occur after the initiation of descent necessitate heading changes. The 

former problem could be greatly reduced by correcting the outer solution 

to first order in E, in a manner similar to the procedure followed in [16]. 

In order to insure intercept under all conditions, it is necessary 

to modulate both thrust andL 22 during descent. In the case of L22 

maximum lift should always be used during descent in maintaining the 

intercept heading, due to the fact that AE in (2.32) becomes positive 

during descent. In practice, a proportio&al control law is used 
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for small heading errors. 

Thrust modulations are used to control rate of descent to ensure that 

h-hT at intercept. Two correction terms are introduced: 

T = Td + 6Tl + 6T2 (3.21) 

where Td is the nominal descent thrust from (2.28, 2.29). The second 

term corrects for the fact that L does not equal W during descent, since 

this is assumed in generating the td and rd tabular data. Thus, 6Tl com- 

pensates for the increased drag due to lift variations. 

6T1 = K(L2-W2>/qs (3.22) 

The second component compensates for the current mismatch (GR)in range, 

where from (3.X!), replacing E. by E 

6R = R + (V T cos yT sinX)td(E ,Ef)-rd(E ,Ef)cos(Bo-X) (3.23) 

A proportional control law was derived, defining 

6i = -Kg 6R (3.24) 

Noting that 

si = (drd(E,Ef) /dE)cos(Bo-x>di (3.25) 

and 

6i = 6T2V/W 

one can solve for 6T2 as 

(3.26) 

6T2 = K3WGR/Vco~(Bo-X)(drd (E,EfYdE) (3.27) 

In order to allow for thrust variation, Tmin was set equal to Tmil/2, 

where T mil is the military thrust level. 

It should be noted that a portion of the descent path calls for 

Td = Tmax' Referring to Figure 8, note that upon initiating descent, 

for E. > Es, the commanded altitude on the descent path is such that 

V1(Eo) ' Vo(Eo) . As shown in Appendix A, this means that XE remains 

negative until Vi(E) < Vo(Eo), which from (2.28) implies tha$ T = Tmax. 
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3.4 Summary of Control Calculations 

A summary of the control calculations including proportional vertical 

lift is presented in Figure 9. The organization of the additional calcu- 

lations for the full zero-order solution is given by Figure 10. All 

on-line calculations are referenced by equation numbers. The purpose of 

the range matching block is to establish the proper cruise or pseudo cruise 

energy level, Eo. During climb, the costates are calculated on-line and 

hc(E,Eo) is taken from tabular data. All turn parameters are calculated 

on-line. During descent, hd(E,Ef) is drawn from tabular data, and thrust 

and lift are calculated as described in Section 3.3. 

3.5 Avoidance of Numerical Singularities 

Numerical difficulties evidenced by discontinuities in the control 

solution were encountered when the aircraft altitude, heading and/or 

flight path angle approached their optimal values for the second and 

third boundary layer solutions. These discontinuities occurred when 

certain functions approached an indeterminate (zero over zero) form as 

the optimum state values were approached. For example, the argument 

being minimized in (2.36) approaches an indeterminate form as heading 

error approaches zero. The corrective measures took the form of first-order 

Taylor series expansions and approximations taking advantage of the 

asymptotic character or the boundary layer solutions. A more detailed 

description is given in Appendix F. 
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SECTION 4 

POINT-MASS MODEL OF THE F-8 AIRCUET 

This section describes the procedure by which the F-8 was modelled 

at trim conditions and presents the results of that effort. The inter- 

cept control law has been built on the assumption that the aircraft 

behaves as a point mass. The aerodynamic model takes the form: 

D = qs CD + WC, > L2/qs = qs CD 
0 a 

L - qs CL (a-a,) 
a 

(4.2) 

Thus, implementation of this model for the F-8 required that values of 

'L ' 'D and IJ be available at trim. These values were generated from 

the" F-8'aerodynamic data in [24] in the manner described below. 

First, by linear interpolation of moment data about the pitching axis, 

elevator deflections corresponding to trim (6 
eT 

) over a range of engle-of- 

attack (a) were determined at selected Mach numbers. Next, CL was 

graphically estimated by determining the slope of a straight l&e passed 

through points corresponding to CL as a function of a, again at selected 

Mach numbers. Since a is small through most of a long range intercept 

trajectory, the approximation was biased to give greater accuracy to 

small a. This procedure also resulted in a non-zero "angle-of-attack at 

zero lift" (a,). Values of CL and a0 as functions of Mach number are 

shown in Table 3. The graphic% CL estimates are displayed in Figures11 

through 17. The original drag coefficient data is tabularized as a function 

of elevator deflection, angle of attack and Mach number. The parameter 

cD was calculated by interpolating the drag coefficient data at trim 

cozditions (6eT, ao> for various Mach numbers. Values obtained for CD 

are shown as a function of Mach in Table 3. Finally, n was calculated' 

based on the parabolic drag model in (4.1). Values of (CD-CD > were 

plotted against (a-a,) on log-log paper and a "best fit" 1ineOwith a slope 

of 2.0 was passed through the points, again favoring lower values of a. 

Then, from values of (CD-CD > and (a-a,) at a point on the line, n was 

calculated by using (4.2) ig (4.1) to eliminate L and solving for n: 

rl = (CD-CD )/CL (a-ao12 
0 a 

(4.3) 
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The plots used in the estimation of rl are displayed in Figures 18 to 24. 

and the resulting values of rl are given in Table 3. 

TABLE 3 

SDMMMY OF F-8 TRIM AERO DATA 

M4cE q, (rad) 

.18 .0192 

.6 .OlOS 

.85 .0140 

.9 .0143 

.98 .0105 

1.1 .0105 

1.2 .0105 

CLa ‘Do n 

3.366 .0149 .446 

3.518 .0142 .580 

4.09 .0152 .734 

4.29 .0166 .a07 

4.18 .0291 .748 

4.24 .040 .733 

3.58 .039 .722 
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Section 5 

NUMIZRICAL RESULTS 

This section documents the numerical tests conducted to verify the 

analytical results described in Section 2, and to test the control design 

described in Section 3. The aircraft simulated in this study was the F-8C, 

modelled as described in Section 4. The computer used in generating num- 

erical data was the IBM 3701168. This machine has a 32 bit word size, a 

basic machine cycle time of 8ns, and performs 3 X lo6 floating point 

operations per second. Main storage access time averages 480 ns. Com- 

putation of the full zero-order solution required 0.07 seconds per update 

and 50198 bytes of core space. Control computation with proportional 

vertical lift substituted for the third and fourth boundary layer solutions 

required 0.03 seconds per update and 43724 bytes of core space. The dif- 

ference in time and space requirements is primarily due to the numerical 

search (2.43) in the third boundary layer. 

Five test cases were utilized for demonstration and evaluation of 

the control logic corresponding to a full zero-order solution. The initial 

conditions, intercept time and final range are summarized in Table 4. 

Cases 1 through 3 share the same sort of initial geometry, though with 

varying initial ranges to the target. In each case, the target flies at a 

fixed altitude, heading and velocity. These cases were chosen to display 

the effect of the range matching calculation, and hence involve very 

little maneuvering. In all three cases, the initial heading error is small 

and the aircraft is at the first boundary layer optimal altitude for its 

initial energy. Figure 25 illustrates the resulting ground tracks. All 

three cases display a slight degree of turning throughout the climb and 

descent portions of their trajectories. This is due to the fact that the 

outer solution optimal heading calculation (2.24) is based on the assumption 
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TABLE 4 

SUMMARY OF INITIAL AND FINAL CONDITIONS 
FOR TEST CASES 

Case x(m) Y Cm> h (4 B(rad) V b&9 

1 0. 0. 3048. 0. 295.92 

2 0. 0. 3048. 0. 295.92 

3 0. 0. 3048. 0. 295.92 

4 0. 0. 3048. 0. 295.92 

5 0. 0. 9144. 0. 212.31 

Case 5 (ml yT cm) hT (4 BT(rad) T V (m/s> 

1 140208. 

2 93023. 

3 46698. 

4 0. 

5 0. 

Case 

-80772. 3048. 1.0472 232.56 

-53209. 3048. 1.0472 232.56 

-27000. 3048. 1.0472 232.56 

1335.7 3048. 3.1416 274.32 

1335.7 6096. 3.1416 274.32 

r(t,) (4 

1 618.05 34.901 

2 434.72 34.008 

3 239.98 34.287 

4 120.09 17.247 

5 150.69 126.25 
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that the aircraft flies at its cruise velocity throughout its trajectory, 

ignoring the fact that lower velocities are encountered during climb and 

descent. During climb, this variation in heading is insignificant; however, 

it is more noticeable during descent. This is due to the more rapidly 

changing line-of-sight angle (X in Fig. 1) encountered as the target moves 

across the aircraft's path at relatively close range. 

Figure 26 displays histories of actual and reference altitudes (hl) 

for Cases 1 through 3. Case 1 is a full long range intercept; the aircraft 

climbs to (Ez, ho*) before descending to the target. Cases 2 and 3 are 

short range intercepts in that the trajectories never achieve the optimal 

cruise energy; instead, they reach lower pseudo cruise energies prior to 

descent initiation. Note that both short range intercepts contain apparent 

cruise legs. This is because the choice of pseudo cruise energy levels was 

restricted to a set of discrete values. If a continuum of pseudo cruise 

energies was allowed, the short range trajectories would consist of 

a climb to cruise immediately followed by a descent to the target. It 

can also be seen that the aircraft altitude tends to lag behind the refer- 

ence altitude during climb in all three cases. This is because the control 

solution is based on a zero order singular perturbation analysis, which 

results in a type zero control law. Hence, a nearly constant error results 

when following the ramp-like altitude reference during climb. Inclusion of 

first-order correction terms in the control solution would be necessary to 

eliminate these errors. It is interesting to note the discontinuity at 

t = 29s in the reference altitude for Case 3. This occurred because the 

aircraft was lagging the reference altitude during climb, thus travelling 

faster than it should have at all energy levels, and closing range with 

the target at a faster pace than appropriate for the climb path. Finally, 

the range to the target became sufficiently shortened that it became 
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Figure 26. Command and actual altitude 
profiles for cases 1-3. 
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necessary to range match to a lower pseudo cruise energy level. A dis- 

continuity in reference altitude can also be observed at the beginning 

of descent for all three cases. This can be attributed to the energy 

state model of the aircraft and the fact that, while the aircraft's 

optimal cruise point is defined by (2.20), the descent path is defined, 

via (2.31), as the altitude and energy corresponding to the 9max boundary. 

In the F-8 aircraft, these points do not coincide at the pseudo cruise 

energies encountered in Cases 1 through 3. 

Figure 27 displays aircraft altitude as a function of velocity for 

Case 2. It can be seen that the energy gain during climb occurred at 

almost constant velocity. Figure 28 displays actual and reference 

flight path angle (y3) histories for Case 2. Figure 29 shows lift and 

bank angle profiles for the same case. The beginning of descent is 

clearly marked in Figure 28 by a sudden decrease in the reference flight 

path angle. The resulting control profiles call for near maximum lift 

and inverted flight to rotate the flight path angle. This amounts to a 

zoom dive to the descent path. Figure 30 displays the thrust history for 

Case 2. During descent, ripples can be seen in both lift and thrust. 

These arise from the proportional vertical lift calculation used during 

the descent leg. The reference flight path angle, yD from (3.13), is 

dependent on the term 'E(dhl/dE)/V. The derivative is calculated by a 

first order difference expression directly from the tabular descent data 

listed in Table 2. The ripples in yD, and hence in lift (3.15), occur 

when the aircraft altitude passes across intervals between the discrete 

points comprising the descent data. These ripples affect the thrust 

through 6T1 in (3.21) and (3.22). The average variation is a consequence 

of the range matching taking place during descent. The accuracy of this 
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Figure 27. Altitude versus velocity for case 2. 
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b! 
approach is demonstrated by the small values for r(tf) in Table 4. 

Figure 31 displays the ground track for Case 4. In this case, 

the aircraft is initially at the first boundary layer optimal altitude 

for its initial energy, offset laterally from the target by a distance 

corresponding to the diameter of a turn for the aircraft at the highest 

sustainable turn rate for the initial conditions. The target moves at 

a constant altitude and velocity at a heading opposite from the controlled 

aircraft's initial heading. This case illustrates a combined initial 

turn and climb behavior, followed by a descent under near tail chase 

conditions. Figure 32 gives the actual and reference altitude histories 

for this case. Note that during the initial hard turn, the aircraft 

performs a "high speed yo-yo" maneuver, moving up in altitude (above the 

climb path) to trade speed for enhanced turning performance. During this 

phase, the reference altitude from the second boundary layer (h2) deviates 

markedly from the first boundary layer optimal altitude (hl), due to the 

initial heading error. Within thirty seconds, however, the heading error 

has been brought down to a small value, resulting in the reference altitude 

asymptotically approaching the altitude called for from the first boundary 

layer solution. Note that the sudden change in reference altitude around 

t=lOs is consistent with the behavior of the second boundary layer 

solution as displayed in Figure 4, where a sudden jump to the corner velo- 

city altitude takes place for large heading errors at low to midrange energy 

levels. Figure 33 shows the altitude versus velocity profile for Case 4. 

Figures 34 and 35 display the reference and actual flight path angle 

profiles, and the lift and bank angle profiles for this case. 

Figure 36 is the ground track for Case 5. This case involved both a 

large initial heading error and a 6096 m offset from the climb path. 

This case was selected to demonstrate high altitude turning behavior, and 
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Figure 31. Ground track for case 4. 
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Figure 33. Altitude versus velocity for case 4. 
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the balance in allocation of resources for reduction of heading and altitude 

errors. The horizontal plane geometry for this case is similar to that of 

Case 4, with the target moving in the same manner, though at a higher alti- 

tude. Again, the aircraft is initially separated from the target by a 

distance corresponding to the diameter of a turn made at the highest sus- 

tainable turn rate for the aircraft's initial conditions. Figure 37 gives 

the actual and reference altitude histories for this case. It can be seen 

that initially more emphasis is given to reducing heading error. In Figure 

38, altitude is shown as a function of velocity. Figures 39 and 40 are 

the reference and actual flight path angle histories, and the lift and bank 

angle profiles. 

Comparing the lift histories for cases 4 and 5, one notes that in Case 

4 the low altitude turning behavior is characterized by a liberal use of 

maximum lift (Fig. 351, which indicates that zeroing of heading error, under 

the circumstances is of greater importance then gaining energy. On the 

other hand, forCase 5, lower values of lift are called for (Fig. 40). This 

is in agreement with Figure 3, which shows that the control solution for 

the second boundary layer tends to inhibit the use of lift at higher energies. 
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for case 5. 
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SECTION 6 

CONCLUSIONS AN? RECOMMENDATIONS 

It has been demonstrated that singular perturbation methods are an 

effective tool for developing computer algorithms for on-line optimal air- 

craft controls. The computation time and storage requirements appear to be 

within the capabilities of present day flight computers. This evaluation 

is based on a minimum time intercept problem. Extensions to other performance 

indices and other forms of terminal constraints should be possible. 

An essential aspect in obtaining implementable solutions is the ability 

to order the individual state variables on separate time scales. This re-. 

quires considerable insight to the dynamics of optimal flight so that a 

suitable ordering can be made at the outset. The ordering selected here 

should be applicable to a variety of problem formulations. In general, not 

all state variables will have separable dynamics. However, this study has 

illustrated two techniques for overcoming this difficulty. For short range 

intercept problems, the position and energy dynamics are coupled, and the 

problem was corrected by constraining the cruise energy level. In general, 

altitude and flight path angle dynamics are highly coupled for all intercept 

conditions. In this case, penalizing flight path angle variations is effective 

in accounting for this coupling. 

A second aspect that may be a stumbling block in singular perturbation 

analysis (at least from the perspective of real time control) is the need to 

define the terminal boundary layer initiation times. The number of these 

layers is dependent on the number of boundary layer state variables that are 

constrained at the terminal time. This definition requires a boundary layer 

integration, which in the case of minimum time intercept can be performed 

off-line. In other formulations, boundary layer integration can have a large 

impact on the requirements for real time implementation. When they cannot 

be done off-line, then an attempt should be made to expand the necessary 

conditions to second order and obtain an analytic expression for the inte- 

gral. 

Based on the results of this study, we offer the following recommenda- 

tions: 
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1. Flight Testing - As mentioned in Section 1, the control d.gorfthm 

has been tested at the NASA Langley real time simulation facility. 

Hence, a logical next step would be an actual flight test. Such an 

effort would require very little in terms of modifications to the 

control algorithm, and could make use of the F-8 fly-by-wire test 

bed at the NASA Dryden facility. It should be noted that, as a 

result of the piloted simulation effort at Langley, many of the 

issues relating to interfacing with displays have been addressed. 

2. Effect of Wind - To date, the effect of wind on the performance of 

the control solution has neither been evaluated nor compensated for. 

Obviously, this topic would have to be addressed before a practical 

implementation of the controller could take place. 

3. Higher Order Solutions - The control law is currently a zero-order 

approximation to the optimal control. In climb, this results in a 

significant lag in following the desired climb profile. This can be 

corrected by introducing first-order correction terms into the first 

boundary layer solution. Similarly, errors in the outer solution 

optimal heading, arising from the rapidly changing velocity and non- 

zero flight path angles in the descent boundary layer, would be 

reduced by correcting the cruise heading to first-order to account 

for these effects. These corrections would primarily affect the 

off-line computations. 

4. Other Performance Indices - Performance indices other than minimum 

time need to be investigated. For example, a logical extension is 

to consider a weighted combination of time and fuel consumption. 

This would encompass most mission objectives. It should be noted in 

this context that the strict minimum time case is highly specialized 

in that the outer and first boundary solutions for h and V are inde- 

pendent of geometry and target velocity. 

5. Bank Angle Computation - In situations where the lift magnitude is 

small, large fluctuations result from small variations in the bank 

angle command in the horizontal and vertical lift components. In 

the context of a practical implementation, this amounts to an excess- 

ive pilot effort in return for a minor trajectory correction. Hence, 

development of a suboptimal strategy to correct this shortcoming is 

called for. 
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APPENDIX A 

OPTIMIZATION OF POSITION, ENERGY AND HEADING DYNAMICS 

This appendix provides a detailed derivation of the zero-order 

control solutions optimizing position, energy and heading dynamics. 

The state equations, for the coordinate frame shown in Figure 1, are 

ir = v co9 y co9 B (A. 1) 

9 = v cos y cos B - VT cos yT (A.21 

. 
EE = (T-D)V/W (A-3) 

. 
E28= L sin u/mV cos y (A.4) 

colt= V sin y (A.5) 

E4; = (L co9 lo - Wcosy)/mV (8.6) 

The following conditions must be satisfied for optimslity: 

ix = -aH/ax , li = -aHlay 
Y 

Ei E = -aH/aE 

E2i 

E3( 

= -aH/a6 

= -aH/ah 

4. E x 
Y 

= -aH/ay 

L, U, T = arg min H(x, A, 2) 
L,u,T 

H = XTj, + 1 + ksin?y + constraints -- 

(A.7) 

(A.81 

(A.91 

(A.lO) 

(A.ll) 

(A.12) 

(A.13) 

where the minimization in (A.12) is subject to the constraints (2.13-2.16). 

The Hsmiltonisn in (A.13) is defined for the performance index in (2.12). 

A.1 Outer Solution 

Taking the limit in (A.1 - A.ll) as g-t0 we have the following zero-order 

necessary conditions for the outer solution: 

TO 
=D 

0’ pO = 0, Y 0 
= 0, Lo = w (A.14) 

aHo/aE = aHo/ah - aHo/a6 = 0 (A.15) 

.,H, = Xx VcosB + Xy (Vsin6 
0 0 

- VT co9 y,) + 1 + constraints = 0 (A.16) 
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where Do is drag for Lo - W and is defined in (2.22). Note from (A.15) 

that E, h and 6 take the role of control variables as we let& and 

(A.8 - A.ll). This implies that E, h and B minimize Ho. At the same 

time, the original controls now become constraints in (A.14). The optimal 

heading B. is derived as follows. From (A.15) we have 

aHo/a8 = -Ax VsinB + X VCOSB = 0 (A.17) 
0 YO 

or that 

tans0 = Ay IAx (A.18) 
0 0 

implying, from (A.7), that the optimal heading is constant. Referring to 
Figure 1, the geometrical requirement for intercept in the horizontal 

plane is 

Vsin(B-A) = VT cos yT co9 A 

where X is the line-of-sight angle. 

(A.19) 

The optimal cruise point (ho,Eo) is derived in the following manner. 

We use (A.18) to eliminate 1 y from (~.16) resulting in 

Ho = hx V/cosB - Ax V 
0 T 

cos yTtan 6 + 1 + constraints = 0 (A.20) 
0 

This gives 

xx lcos8 = -l/(V-VTcosyTsinf3) < 0 
0 

(A.21) 

From the intercept condition (A.19), it can be seen that the denominator 

of (A.21) must be positive. Applying this condition to (A.20) and minimizing 

Ho gives: 

ho' E. = arg max(V-VT cos yT sin6) (A.22) 
h,E Td=Do 

Despite the seeming dependency of the solution of (A.22) on VT, yT 

and i3, it can be shown that ho and E. are independent of target parameters 

and intercept geometry. Denoting the quantity being maximized in (A.22) as 

n, we will show that an/aV > 0 for all values of V. It follows that (A.22) 

reduces to finding h and E that maximizes V subject to the constraints (A.14) 

and also (2.13-2.16). Examining the variation of (A.22) and the intercept 

condition (A.19) we have 
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h = 6v-vTcosyTcosBo 6B (A.23) 

and 

GVsin(fio-X) + V. Co9 (go-X)&!3 = 0 

respectively. Eliminating 68 in (A.23) and (A.24) we have 

(A.24) 

6lJl6V = 1 + VTCOSYT '09% tan@,-X)/V, (A.25) 

Making use of (A.19) to eliminate V. in (A.25), we obtain 

6rl/6V = 1 + cos80sinL (So-X)/co9 (B,-A)cos A (A.26) 

For intercept to occur, (Bo-)c)must lie in the interval (-a/2, v/2), implying 

that cos (So-A) > 0. Further, from Figure 1, cosBo/cosX > 0. Note also 

that if X = So = 21~12, then the second term in (A.26) is zero. 

After determining ho, E. that maximize V subject to the constraint 

To-Do, So is computed from (A.19) for the maximum cruise velocity, V=Vi 

then the position costate can be determined from (A.18) and (A.21): 

xX 
= -c~~~~/(V-V, cos yT sin 8,) (A.27) 

0 

A 
YO 

= -sinSo/(V-VT co9 yT sin So) (~.28) 

Note that (A.18) should not be used directly in calculating X y given Ax , 

due to the indeterminate formthat results at B, = -3~12. 0 0 

A.2 First Boundary Layer Solution 

Using the time transformation T =I t/z and letting EM, the necessary 

conditions for the first boundary layer become: 

u1 = 0, Yl = 0, L1= w 

aHl/ah f aH /aa = 1 aH /aT = 0 1 

H1 = lx vcosB + xy (vsinf+VTcosYT) 
0 0 

+ AE 
1 

(T-D~)V/W + 1 + constraints = 0 

(A.29) 

(A.30) 

(A.31) 
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Although (A.30) and (A.31) represent four nonlinear equations in four 

unknowns, their solution is quite straightforward. 

The first boundary layer optimal heading comes from (A.30): 

aal/as = -Xx VsinB + Ay Vcosf? = 0 (A.32) 
0 0 

giving 

% 
= taKrl(Ay /Ax 1 = 8. 

0 0 

because T appears linearly in (A.31), we have 

T1 f Tmax (h,V) for AE < 0 (A.34) 
1 

Tl= Tmin (h,V) for A, > 0 
"1 

The minimization with respect to h is obtained by recognizing, as 

described in Appendix E, that aHl/ah = 0 and 5 = 0 is equivalent to 

(A.35) 

hl 
= arg min - (Tmax-Do> V/W 

h Ho C&h) E =E current 

for XE < 0, and 
1 

hl = arg min (~~~-~~)v/w 

h Ho(W) E=E current 

(~.36) 

(A.37) 

forX >O. 
E1 

The-term Ho(E,h) is the outer solution Hamiltonian evaluated 

at the current values of E and h. The expressions (A.36) and (A.37) roughly 

correspond to climb and descent, respectively. The first boundary layer 

costate is obtained from (A.31): 

A 
El 

= -wH~(E,~)/v(T-D~) (A.38) 

h=h 1 
T = Tl 

As was the case with the outer solution, it is possible to obtain hl 

in a form independent of target parameters. Use of the condition Ho(ho,Eo)=O 
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provides 

1-x 
YO 

VT cos yT = -Ax vo/cosf30 
0 

Substituting (A.39) in (A.36) and (A.37), using the inequality in (A.20, 

and then eliminating multiplicative constant terms results in: 

hl = arg min CT --Do> V 

h V - v. E=E current 

for XE 
1 

-z 0, and for AE > 0: 

hl = arg min 
-(T~~-D~)V 

h v - v. 
I E=E current 

(A.39) 

(A.40) 

(A-41) 

It should be noted that hl(Eo), where E 
0 

is a cruise or pseudo cruise 

energy level, will generally differ between climb and descent; hence the 

aircraft must execute a constant energy transition arc from cruise to 

descent altitude, as discussed in Section 3. Also of interest here is 

the fact that Tl may not switch from Tmax to Tmin immediately upon the 

initiation of descent. This can be seen by substituting (A.39) in (A.38), 

giving 

A 
El 

= -W Ax (V-Vo)/V (T-Do)cOs B. (A.42) 
0 h=h 

1 
During climb Tl > Do and XE < 0; thus, Tl = T-x during climb. After the 

1 
initiation of descent, for large values of Eo, Tmax < Do and initially, 

v ' Vo' so we still have that XE < 0. Because of this, the optimality con- 

dition is Tl = Tmax in descent &til V < V o, as illustrated in Figure 8. 

For V e Vo, the optimality condition is Tl = Tmin. Note from Figure 8 that 

if E. < Es, then V < V. initially on the descent path, and thrust should 

immediately switch to Tmin. 

A.3 Second Boundary Layer Solution 

The heading dynamics are accounted for by introducing the time trans- 

formation f = t/s2 and once again letting ~0. The necessary conditions for 
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optimality are 

Y2'0,L 
2 

= w2 + LZ2 

aH2/ah = aH2/aT2 = aH2/aL22 = 0 

(A.43) 

(A.44) 

H2 = Hl(E,h,B) + As 
2 22 

L /mV - XE 
2 

1 
VK L22/qsW + 

constraints = 0 (A.45) 

where L22 is the second boundary layer horizontal lift and Hl(E,h,B) is 

the first boundary layer Hamiltonian evaluated at second boundary layer 

conditions. Equations (A.44) and (A.45) give four nonlinear equations in 

four unknowns. 

If we assume that all turning takes place near the initial time we 

have that A 
% 

< 0 so that the optimal thrust during turning is 

T2 - Tmax (h2,V2) 

where h 2 is the second boundary layer optimal h and V, is 
L 

V2 = +h2)2g 
E =E current 

(A.47) 

Solving for the optimal horizontal lift, using (A.44) and (A.45), we obtain 

aH2/aL22 = -2xE 
1 

n22 v/qsw + A /mV=O 
B2 

(A.48) 

Using (~.48) to eliminate X 
82 

in (A.45) results in 

L22 = ksWHl(E,h,8)/VKXE 
1 

-sign ($,-$I 

We also note from (A.48) that 

sign (L22> = sign(X 
B2 

) 

(A.49) 

(A.50) 

Substitution of these results in (A.45) and use of the minimization proce- 

dure detailed in Appendix E results in the following solution for h2: 

h2 = arg min I-p/%(E,h,B)KN 
h 8=8 current (A.51) 
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subject to the constraints (A.44) and (2.13-2.16). Having computed the 

second boundary layer controls, the costate A 
82 

is determined: 

x?2 
=2H1 (E,h,8)mV/L22 

I 
h-h 

2 (A.52) 
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APPENDIX B 

OPTIMIZATION OF ALTITUDE AND FLIGHT PATH ANGLE DYNAMICS 

This appendix provides a detailed derivation of the zero-order control 

solutions optimizing altitude and flight path angle dynamics. The state 

equations and necessary conditions have already been summarized (A.l-A.13). 

B.l Third Boundary Layer Solution 

The third boundary layer problem arises from applying the time trans- 

formation T = t/z3 to (A.l-A.12) and letting ~4. Here, the zero-order 

necessary conditions for optimality are: 

L13 
= w cos y 03.1) 

aH3/ ay = aH3/aL2 = 0 03.2) 

H3 = Hl(h,E,8,y) - AE 
1 

L22KV/qsW + x 
$2 

L2g/wv co.5 y 

\ Vsiny + vl(Y~ax-y2) + v2(Liax- 2 cos2y-L;) = 0 
3 

(B-3) 

where H 1 (h,E,$,y) is the first boundary layer Hamiltonian evaluated at 

current values of h,E,$ and y; that is 

Hl(h,E,8,y) =(Xx cos8 + Xy sin8)Vcosy - 
0 0 

Xy VTcos yT 
0 

+ XE (T-Do)V/W + 1 + ksin2y 03.4) 
1 

where 

DO 
= qsCD + Kw2cos2 y/qs (B-5) 

0 

The parameters )tx , X , XE , and X8 are known from the outer, and first 
0 Yo 1 2 

and second boundary layer solutions. Satisfaction of (B.2) for L2 yields: 
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aHgaL - ‘2XE 1 L; KV/qsW + h82g/WVcosy - 2v2L2 = 0 (B-6) 

Note that PO off the lift constraint, in which case the horizontal lift 

solution is given by 

= A 
L23 B2 qsg/PX 

E1 
Kv2cos y3 (B-7) 

On the constraint boundary, Lz3 - Lmax2 - w2 cos2y and v can be determined 

as a function of y. In either case, L23 and y can be determined as functions 

of y and other known parameters. Hence, we need only combine (B.7) with 

the first of (B.2) and (B.3) to compute optimal y3 and its corresponding 

costate 
h"3' 

To do this, we follow the procedure described in Appendix E, 

writing 

Y3 = arg rnz+x {siny/H2(h,E,8,y))'sign (h2-h) a. 8) 

where H2 is the second boundary layer Hamiltonian 

H2 = H1-hEl 
2 L23 KV/qsW + A 

82 
L2 3 gmcosY (B-9) 

For L23 in (B.9), (B.7) is evaluated at the search value of y in (B.8). 

The maximization in (B.8) is performed over the range 0 < y $ ymax, where 

we have used the fact that sign($ ) = -sign(y) = sign(h-h2) where h2 is 
3 

the optimum altitude from the second boundary layer. Having determined y3 

and L23' 'h3 can be computed using (B.2): 

xh3 
= -IHl(h,E,B,Y3) - lE L2 

1 23 
KV/qSW + h8 L23g/wkOSY3)/VsinY3 (B.10) 

2 

B.2 Fourth Boundary Layer Solution 

For solutions off the lift constraint bound we write the fourth boundary 

layer Hamiltonian as 

H4 = H3(h,E,B,y) - AE 
1 

K(26L14 Wcosy + 6L;4) + 2("L24L23 + L$V/qsW 

+A 
82 

6L2b g/wvcosy + x 
Y3 

CiL14g/WV = 0 (B.ll) 
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where 6L14 and 6L24 are perturbations in the controls from the third 

boundary layer solutions: 

6L14 * L14 - wcosy (B-12) 

6L24 = L24 - L23 
(B.13) 

Using the conditions H4 = 0, aH4/aSL14 = 0 and aH4/36L24 = 0 we obtain the 

following solutions 

= x 6L24 g2 gqs/2AE KV2 cosy - L 
1 23 

6L14 = [-H3(h,E,B,y)qs W/AE 
2 l/2 

1 
KV-6L24I l sign(y3-y) 

The final lift and bank angle equations are: 

(B.14) 

(B.15) 

L 2 = {(Wcosy + "L14) + (L23 2 l/2 + 6L24) 1 (B.16) 

IJ = tan-1(L24/L14) (B.17) 

If L in (B.16) exceeds 

conditions in order to 

L14 = Lmax cos u 

L24 = Lmax sin P 

we obtain, via aH4/ap 

L we set L = L max max and reformulate the necessary 

determine the optimum bank angle. 

(B.18) 

(B.19) 

X 0: 

t=iJ =x /h 
82 Y4 

cos y (B.20) 

The procedure for and considerations involved in determining X are 
Y4 

detailed in Section B.3. 

It can readily be shown that the fourth boundary layer solution asymptoti- 

cally approaches that of the third. From (B.7) and (B.14), we have 

6L24 = Ifs2 qsg(l/ZX 
E1 

KV2cosy - 1121 
E1 

KV2 cos Y,> (B.21) 
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Since (B.21) is continuous it will asymptotically approach zero as y-ty3. 

Examining the form of (B.l5), it can be seen that 6L14 also go to zero as 

Y+Y39 since H 3 (h,E,B,y) goes to zero, as does dL24. 

B.3 Calculation of the Fourth Boundary Layer Costate 

The costate X 
Y4 

is determined by a quadratic equation obtained by 

substituting (B.20) in (B.11): 

Ak2y4 + BX +c=o 
Y4 

where 

A = g2(Ln2/W2-cos2Y)/g 

(B.22) 

(B.23) 

B = 2Qg cos y/v (B.24) 

c = (X 
82 

Lmaxg/vwcosY)2-~2 

Q = Hl(h,E,B,y, L=Lmax) + k3 VsinY 

where Hl haa been defined in (B.4). 

The roots of (B.22) are as follows: 

x = 
y4 

(-B + =)/2A 

where the term under the radical is 

B2-4AC = 4I(@L ,,,g/~) 2- (QL ,,,g/w - (X8 Lmaxg2/wh2 
2 

+ (X 
82 

(L-g/W2/cosY)2} 

(B.25) 

(~.26) 

(B.27) 

(~.28) 

Because we require real-valued roots for (B.22) the term (B.28) must 

remain nonnegative, or 

Q2 + {l-(Lmax/w COSY)~} (A 
82 

g/iq2 2 0 (~.29) 
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or 

Q2 ,, (Ln2 - w2 

In the third boundary 

cos2 y>(X 
82 

g/vwcosY)2 

layer it can be seen that 

7 7 
L; =L;=- ,j! 2 cos y 

max 

(B.30) 

(B.31) 

H3 = Q + AB2LZmax g/VW cos y >, 0 (B.32) 

The product X 
82 

l L2 is always negative, so (B.30) can be rewritten: 

Q>,IA L2 
82 max 

g/VW cos Y 1 (B.33) 

Combining (B.31) and (B.33), we can see that the inequality in (B.30) is 

guaranteed. 

Also, the third boundary layer Hamiltonian in (B.3), evaluated at the 

conditions under consideration is 

It can also be shown that the roots of (B.22) have opposite sign sense. 

This is required to m&e a selection from the two solutions for X 
y4 

in (B.27) 

The importance of the sign sense of X 
Y4 

can be appreciated by noting that 

x = aJ/ay (B.34) 
Y4 

where J is the performance index (2.12). Since y3 is the optimal flight 

path angle, we have from (B.34) that 

6J = x (Y-Y31 2 0 (B.35) 
Y4 

This indicates that X 
Y4 

must have the same sign as (y-y3). To show that 

(B.27) always produces roots of opposite sign, note from (B.23) that A d 0 

since L max >, W within the flight envelope. Also, (B.25) and (B.33) indicate 

that C < 0, implying that AC 6 0 in (B.28). Because of this, the term under 
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the radical in (B.27) has a dominating magnitude in that expression, 

guaranteeing real roots of opposing sign. 
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APPENDIX C 

ORDERING OF ENERGY AND HEADING DYNkICS 

This appendix justifies the ordering selected for energy and heading 

dynamics. We will examine the eigenvalues associated with a linearized 

boundary value problem in which E and 6 dynamics are both considered on the 

same time scale (T 't/s, in the context of Section 2). In this case, the 

necessary conditions during climb are: 

dE/dt = (T~~-D)v/w dXE/dr = -;)H/BE 

dB/dr - L2/mV dXS/dr = -aHlaB 

aH/ah = 0 aH/at = 0 
2 

H = Xx V cos B + xy 
0 0 

(v sin B - VT cos y,) + XE(Tmx-D)V/W 

+XL/mV+l=O 
62 

(C-1) 

cc. 2) 

(C-3) 

(C-4) 

where Xx and Xy are defined in (2.20) through (2.26), and 

D = qsCD + K(W2 + L;)/qs (C-5) 
0 

The second of equations (C.3) gives 

L2 = (wg/4KXE) X6 CC. ‘3) 

Consider an expansion of the above conditions about the optimal climb solu- 

tion at the optimal heading, so that we have 

iE = AE (El 
1 

ii = hl 03) 

dE/dr = i1 (El 

x =o 
6 

aH/ah = 0 L2 = 0 

ii- 8, (C-7) 

All of the nominal values in (C.7) are associated with the first boundary 

layer solution in Section 2. The linearized dynamics resulting from (C.l) 

through (C.3), (C.5) and (C,6),using primes to indicate d(*)/dr, are: 
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6E' - (6E'/aE)bE + (aE'/ah)gh - (+3E)6E (C.8a) 

61; - -(aEl/ao5xE + f (E&E (C.8b) 

66' - Gsg/iEKmvl) 6 X6 (C.9a) 

ax;, - ox/cos iw, 68 (C.9b) 

where 6h has been eliminated by using the first equation in (C.3). The 

function f(E,h) does not affect the eigenvalues of (C.8). Note that (C.8) 

and (C.9) are decoupled. The eigenvalues of (C.8) are 

pE - +(ail/aE> (C.10) 

and for (C.9), they are 

P8 = (C.11) 

where (Xx/cos i) and hE come from (2.25) and (2.32), respectively; 

Further, both quantities are always negative. It can be seen from Table 

5 that, for the problem described in this report, 8 is clearly a faster 

variable than E. Note that in the case where relative position dynamics are 

ignored [12], we have that Xx = 0 and that E is the faster variable. 
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TABLE 5 

COMPARISON OF EIGENVALTJES ALONG CLIMB PATH FOR AN F-4 AIRCRAFT 

Energy Of) PEWS) PgWs> 

6705.6 f 0.0200 f 0.317 

12192.0 -+ 0.0186 + 0.178 

18288.0 2 0.0023 f 0.164 

24384.0 f 0.0090 + 0.152 

29870.4 f 0.00115 f 0.763 

30480.0 0* 
* 

00 

*For the F-4, aEl/aE = X 
E1 

= 0 in cruise due to the Mach limit. 
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APPENDIX D 

SEPARATION OF ALTITUDE AND FLIGHT PATH ANGLE DYNA@ICS 

Optimization of h and y dynamics is a classical problem in flight 

mechanics. This problem's difficulty lies in the fact that these dynamics 

are highly coupled if tiewed separately from position and energy dynamics. 

This appendix presents summary analysis of the h and y dynamics in the con- 

text of relative position dynamics and demonstrates that, while not completely 

decoupled, they can still be optimized by singular perturbation methods. A 

more detailed development may be found in [25]. 

D.l Formulation 

In order to simplify the discussion, (2.1 - 2.6) will be specialized to 

motion in a vertical plane, with So = z/2 and VT = 0. For this problem the 

outer and first boundary layer solutions are as in Section 2 and Appendix A, 

with h - 0 and X 
X0 yo 

= -l/V,. Satisfaction of boundary conditions on h and y 

requires further boundary layer analysis of these dynamics, using L and T as 

control variables. It has been shown [7] that if h and y are chosen on the 

same time scale: 

E2il = V sin y CD. 1) 
2' 

EY = (L-W cos y)/mV (D.2) 

a nonlinear TPBVP results, the solution of which is not available in feedback 

form. In hope of obtaining a valid feedback solution, we are led to con- 

sider a further separation of h and y dynamics, amending (D.2) so that y 

varies on a faster time scale than h. 

c3; = (L-W cos y)/mV (D.3) 

The validity of the approximation implied in (D.3) will be examined by 

analyzing the eigenvalues of the linearized closed loop dynamics along the 

climb path. These eigenvalues will be compared to the eigenvalues for the 

linearized closed loop dynamics resulting from the control solution when h 

and y are modeled according to (D.l) and (D.2). It is shown that a close 

match can be obtained by properly selecting kin (2.12). 
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. . . 

D.2 Eigenvalue Analysis 

We first consider an expansion of the second boundary layer necessary 

conditions for the formulation in (D.l) and (D.2). After eliminating the 

control as a function of states and adjoints, the following fourth order 

linear system results: 

0 vl- 0 0 

d 
dr 

where 

ii - hl (E) 

gr;/v,, 0 0 g/v A 
1Y 

K1 0 0 -g+,IvlP 

0 K2 -vl 0 

K1 - -a2H1/ah2 i; 
I 

,<O 

x = 4m X Y _ E1 
K/is < 0 K2 = xyo v1 - ly g/v1 < 0 

6h 

Y 

'h 

(D.4) 

6X 
Y 

P - p(h) 

'h = aolah 

The eigenvalues 

ii v1 = J 2g(E-h)' 

+ 'E (T-Do)V/W + 1 + k sin2 y 0.5) 
1 

of (D.4) are the roots of 

s4+as2+b=0 CD. 6) 

where 

a = g(g/V~ - 2;&-) - xy 
0 

g/I, 

b= g VIKl/~y >, 0 

(D.7) 

CD.81 

and are arranged symmetrically about the real and imaginary axes. Since it 

is always possible to suppress two of these modes by apprepriate choice of 

initial conditions on Xh and 6X 
Y’ 

a necessary condition for the existence of 

an asymptotically stable boundary layer solution is that none of the eigen- 

values are strictly imaginary. This follows if 

4b > a2 CD. 9) 

or 

b> Oanda<O (D.lO) 
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An analysis similar to the above was conducted in 171, where relative posi- 

tion dynamics were ignored. In this case, 7( 
yo 

= 0 so that, from (D.7), 

a Z= 0. Thus, the conclusion regarding existence of a boundary layer solution 

depends on (D.9), which must be tested for individual aircraft types. When 

relative position dynamics are included, the last term in (D.7) is dominant, 

and a Y 0. Furthermore, it can easily be shown that, for the conditions in 

(D.lO), the damping ratio is greater than 0.707. 

We now consider the boundary layer dynamics for (D.l) and (D.2), but 

for the feedback control solution of Appendix B specialized to the same 

planar problem. This implies we are using the approximation in (D.3). When 

the closed loop dynamics are linearized about the climb path, we obtain the 

following second order system: 

d (6h)/dr - V1 y 

d v/dT - 6L/m V 
(D.ll) 

where 

6L - -K3 y - K4 6h 

K3 - K5 (-A 
YO 

V1 + 2 AE KWVl/ql s + 2k) 
1 

K4 = K5(lyo g2/v; + A 
Kl 

Ehh) 

K5 = 

'hh - a2 E/ah2 - 
I h 

q1 -pv;/2 (D.12) 

The eigenvalues of the closed loop system are given by the roots of 

s2 + K3 s/mV1 + K4/m - 0 (D.13) 
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D.3 Numerical Comparison of Eigenvalues 

Table D.l displays the eigenvalues of (D.6) and (D.13) for k-0, and 

those of (D.13) for k-0.89 for five different energy levels along the climb 

path. F-8 aircraft data was used for this comparison. Note that for k-0, 

the damping ratio obtained using (D.13) is approximately half of that ob- 

tained from (D.6). Though not apparent from Table 6, the natural fre- 

quencies in all cases are equal. 

From the second of (D.12), it is apparent that k only affects the 

damping ratio and not the natural frequency of the closed loop dynamics cor- 

responding to (D.13). Thus, for a given energy level, it is possible to 

choose k so that the eigenvalue of (D.13) match those of (D.6). For 

example, in the case of the F-8 aircraft at E = 9112m, the eigenvalues are 

matched by selecting k = 0.89. The calculation at other energy levels is 

summarized in the last column of Table 6. Note that a reasonably good 

approximation to the eigenvalues of (D.6) is obtained at all energy levels. 

A better approximation results when k is chosen so that the eigenvalues are 

matched at E = 13528m. This approach to approximating the optimization of 

h and y is closely related to a state constrained matching approach used in 

[12]; however, the form of the solution here is much more appropriate for 

real time implementation. Trajectory results for k-Q and k=O.89 are given 

in 1251. 
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TABLE 6 

COMPARISON OF EIGENVALUES FOR h, y BOUNDARY LAYER DYNAMICS 

Energy Level (m) Equation(D.6) Eigenvalues (l/s) 
Equation(D.13), k=O 

Equation (D.13); k=0.89 

9112 -.156 f 1 .108 -.082 + i .171 -.156 f i .108 

11320 -.114 ?I i .O78 -.064 f 1 .123 -.123 + 1 .063 

13528 -.089 f i .068 -.048 + i .lOO -.093 + i .062 

15737 -.069 f i .064 -.032 + i .089 -.064 + 1 .070 

17945 -.084 2 i .072 -.038 + 1 .105 -.067 + i .090 



. . - i- 

APPENDIX E 

MINIMIZATION OF A HAMILTONIAN FUNCTION WITH ONE UNKNOWN COSTATE 

This appendix documents a method for minimizing a Hamiltonian function 

with one unknown costate, the procedure having been used in minimizing the 

Hamiltonian for the outer solution and first through third boundary layers 

of the analysis in this report. 

Given the Hamiltonian function 

H(x) - f(x) + 1 g(x) - 0 (E. 1) 

The sufficient conditions for the existence of a minimum for (E-1) are 

aH/ax - fx + hgx = 0 (E.2) 

a2H/ax2 f fxx + bxx ’ 0 (E.3) 

In a free time problem where t does not explicitly appear in H, it is also 

necessary that H-O. Using (E.l), this leads to 

A I -f/g , gfio (E.4) 

Using (E.4) in (E.2) and (E.3), we obtain: 

aH/ax - fx - (f/g)gx = C 

a2H/ax2 = fxx - (f/gk& ' 0 

Define the function 

L = g/f 

Taking the first and second partials 

aL/ax - [fgx - gfx]/f2 

a2L/ax2 = [fgxx - - 2fx(aL/ax)/f 

(E.5) 

(E. 6) 

(E-7) 

(E-8) 

OL 9) 
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Setting (E.8) equal to zero gives the same condition as in (E.2j and (E.4). 

Condition (E.6) can be rewritten 

gfxx - fgxx '0 9 8'0 

Using aLlax = 0 in (E.9), it can be-seen that the follow-ing will be equivalant 

to (E.lO): 

a2L/ax2 c 0 , g’o 

a2L/ax2 2. 0 , 8 <o 

From the foregoing, we can conclude that 

max IL1 , g '0 

min IL1 , g <o 

(E.ll) 

is equivalent to the conditions in (E.l - E.3). 
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APPENDIX F 

ELIMINATION OF NUMERICAL SINGULARITIES 

This appendix describes the measures taken to prevent the appearance 

of indeterminate ratios in the control calculations, the presence of which 

led to discontinuities in the controls when the aircraft closely followed 

the optimal altitude, heading and flight path angle commands. 

The expression for the first boundary layer costate (,4 
El 

) is, from (A.38): 

x 
El 

= -Wio(E, hl> / V1 (T1-Do) 

I E =E current 

CF. 1) 

where Ho is the outer solution Hamiltonian and the "1" subscripts indicate 

values at first boundary layer optimum conditions. If the aircraft's maxi- 

mum velocity cruise point lies on the zero-energy-rate contour, an indeter- 

minate ratio results at h=ho, E=Eo. The value of X 
El 

actually tends toward 

zero as the cruise point is approached, so before calculating X 
El' 

the energy 

rate is tested for proximity to zero. If it is too close for a reliable co- 

state calculation, X 
El 

is set to zero. 

Both the first and second boundary layer solutions specify an optimal 

altitude (hl and h2), with h2 + hl as the aircraft heading error approaches 

zero. Generally, the second boundary layer optimal altitude (h2) is deter- 

mined by solving the following equation, from (A.51), using a step search 

in altitude: 

h2 = arg min {-1~/Hl(E,h,8)m) CF. 2) 
h s-0 current 

where 

IL,,1 = J -q s WHl(E,h,B)/v R XE 
1 

(F.3) 

Since Hl(E,hl,8) + 0 as 8 + 8,, (F.2) approaches an indeterminate form. In 

the control logic, aircraft heading error is tested for proximity to zero. 

If it falls within a certain region h2 is set equal to hl, eliminating the 

altitude search. 
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In the third boundary layer solution, an optimum flight path angle is 

calculated by solving, from (B.8): 

Y3 = arg max {sin Y /H2(h,E,8,y)1 l sign(h2-h) 
Y 

(F-4) 

This is done by a step wise search in the same manner as in equation (F.2) 

Again, an indeterminate form appears in (F.4) when h + h2, since both y3 

and H2 + 0. When Ih2-hl is small, the current altitude is artifically 

determined to be 

h Q = h2 + 6h, 6h >O (F-5) 

Requiring 6h to be positive precludes violation of the math constraint 

boundary. Then y3 and Ah are calculated in the usual manner, but for 

h=h'. 
3 

Finally, since both y3 and Xh are zero for h=h2, y3 and Xh are car- 
3 3 

rected using a linear interpolation: 

Y3 = y3 (h-h2)/dh (F.6) 

'h3 = 'h3 (h-h21 / 6h (F.7) 

Although all calculations in the fourth boundary layer are analytic, it 

has been found that, due to accumulated numerical inaccuracies in the preced- 

ing boundary layer solutions, there is a lack of numerical definition when 

the flight path angle error becomes small. When this occurs, the flight path 

angle is perturbed: 

Y0 = Y3 + sign Iv- Y3) * 6 Y , 6y > 0 CF. 8) 

The optimal horizontal and vertical incremental lifts (6L14 and 6L24) for 

this boundary layer are then calculated using y" according to the procedure 

detailed in Appendix B. Then the following corrections are applied: 

6L14 = 6L14 l 1 (Y-Y3)/SYl CF. 9) 

6L24 6L24 l 1 (Y-Y3)DY I (F.lO) 
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